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Self-Consistent Treatment 
of a Phase Transition in a 
System with a Vector 
Order Parameter 
M a r c o  Z a n n e t t i  1 
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The problem of the continuation of the Hartree approximation below the 
transition temperature is considered for a system with a vector order 
parameter. In contrast to the case of a scalar order parameter, considered 
in a previous paper, it is found that a self-consistent and gapless approxima- 
tion can be constructed in the limit of a very large number of vector 
components. The results agree with those of the spherical model. 
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1. I N T R O D U C T I O N  

Self-consistent approximat ions  of the Hartree type have been applied by 
various authors  (~ to the study of the superconduct ing  t rans i t ion  and  by 

Mura ta  and  Doniach  (2~ to the phase t ransi t ion in i t inerant  ferromagnets.  
In  a previous paper (8~ we considered the problem of the con t inua t ion  of 

the Hartree approximat ion  below Tc in an arbi t rary  system described by a 
scalar order parameter.  
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The main results of this paper were as follows. 

(a) We obtained a set of critical exponents as Tc is approached from 
a b o v e ( ~ = 2 ,  v =  1 , ~ = - 1 ) .  

(b) When the decoupling of the order parameter correlation function 
characteristic of the Hartree approximation is imposed below To, thermo- 
dynamic equilibrium requirements lead to a shift of the transition tempera- 
ture and the transition becomes of first order. 

(c) These features of the approximation below Tc are ascribed to a 
violation of the condition of gaplessness. On the other hand, a gapless 
continuation to the ordered phase of the Hartree approximation cannot be 
performed in the case of a scalar order parameter. 

It has recently been realized (4,5~ that for T > Tc the Hartree approxima- 
tion becomes exact for a system with a vector order parameter in the limit of 
a very large number of components. In fact it reproduces the results of the 
spherical model. <6~ We expect that in this limit the description of the ordered 
phase (T < To) will also be greatly simplified. This is indeed the case and in 
this paper we consider a soluble self-consistent approximation which becomes 
exact when m, the number of vector components, tends to infinity. 

Although the results reported are not new 2 (Brezin and Wallace <5~ have 
in fact computed the exponent p to order 1/m), it is of interest to show how 
in the framework of  the 1/m expansion a gapless and self-consistent con- 
tinuation of the Hartree approximation arises in a natural way. 

2. BASIC  E Q U A T I O N S  

We represent the partition function of the system by a functional 
integral <7~ 

Z = f ~{~l(x)} exp[-F{~(x))/K~T] (1) 

where F{~l(x)) is the Landau-Ginzburg functional for a vector order param- 
eter ~l(x) = [~l(x) ..... ~m(X)]: 

F(~q(x))/K~T = ( dax {�89 V n + �89 ) 

+ B[~l(x).Yl(x)] 2 - t~l(x)} (2) 

In Eq. (2) Ks is the Boltzmann constant, d is the dimensionality of the 

2 Results similar to those contained in this paper have been obtained by S. Ma (Univ. of 
California--La Jolla preprint) in his analysis of the renormalization group in the 
large-m limit. This work came to our attention after the completion of this paper. 
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system, A depends linearly on the temperature, B is a positive constant of 
order 1]m to ensure log Z oc m, and t~ is an external field in the direction 
of  the vector component number one. 

The external field t~ breaks the spherical symmetry and a nonzero 
expectation value for ~l(x) results, i.e., 

g = <,71(x)> # 0 (3) 

which is independent of  x for a translationally invariant system. The angular 
bracket denotes thermodynamic average. 

We introduce the new field 

4 ( x )  = v l ( x )  - g (4) 

and rewrite Eq. (2) as 
(K~T)-IF{g, ~b, 72"" "'qm} 

f~[�89 2 + Bg ~ - ixgl + j" dax {{(V~b) 2 + �89 

+ �89 2 [(VBJ)2 + A~j2(x)] + 6Bg2~2(x) + 2Bg2 2 ~J 2(x) 
i = 2  I = 2  

+ B ~b2(x) + %2(x ) 2 + 4Bg~b(x) ~b2(x) + %2(x) 
. =  

+ [(A + 4Bg~)g -/x]~b(x)} (5) 

where f2 is the volume of the system. 
The quantities of  interest are the average order parameter g, and the 

transverse and the longitudinal correlation functions defined, respectively, by 

qr(x - x') = (%(x)~/j(x')>, j = 2,..., m 

qL(x - x') = @(x)~b(x')>. (6) 

In the following we shall consider the Fourier transform of the correlation 
functions qT,L(k) = f ddx qz,L(x) exp(ik.x). We can formally write down a 
closed set of  equations (7) 

qo-l(k = 0)g = tx + K (7) 

qT-l(k) = qo-~(k) - MT-I(k) (8) 

qL-~(k) = qo-l(k) - ML(k) (9) 

where qo-Z(k) is defined by 

qo-~(k) = k 2 + A (10) 

and K, Mr ,  ML are functionals of  g, qr, qL. 
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The set of  equations (7)-(9) is obtained by generalizing 8 to the case of  
a vector order parameter the formalism developed in Ref. 7 for the case of a 
scalar field. In the same way one can also derive an expression for the dimen- 
sionless free energy as a functional of g, qT, qz: 

W{g,  qr, qL} = f2[~Ag ~ - /xg] + �89 ~ qo-l(k)qL(k) + �89 ~ ,  qo-a(k)qr(k) 
k Ix 

- �89 ~ log qz(k) - �89 ~ log q~(k) - �89 qr, qz} (11) 
k k 

where the functional q~, in the exact theory and in any approximation giving 
consistent thermodynamics, (e~ is related to the quantities K, M~, ML entering 
Eqs. (7)-(9) by 

3q~ 3q~ 

In addition, the above expression for the free energy has the variational 
property (7) that it is stationary around the equilibrium values of its argu- 
ments. Namely, the stationarity condition 

(8 w/sg)q~.~ = 0 ( 1 3 )  

(3 W/3qr(k))o.q~ = 0 (14) 

(3W/3qL(k))o.q ~, = 0 (15) 

is equivalent to the set of (7)-(9). 

3, T H E  LARGE m L I M I T  

In computing orders of magnitude, we take into account that B ,.~ 1/m, 
g ~ rn :/2, as can be verified by inserting the first contribution to K ~ Bg 3 
in Eq. (7), and that each transverse loop contributes a factor m. 

The lowest-order contributions in the skeleton expansions of K, MT, ML 
can then be represented by the diagrams 

(_~j o(~ -v2) K = + + ( ] 6 )  

MT= ~ § (~? + o ( 1 )  (17) 

3 The details of the formalism for the case of a vector order parameter will be presented 
elsewhere. 
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N L = ~ § \,qy) + 

where the dot represents the coupling constant B, the wavy line represents the 
order parameter g, the dashed line represents the transverse correlation func- 
tion qr, and the shaded bubble represents the sum of strings of bubbles, 
namely: 

The transverse self-energy Mr does not include bubble terms, since one of the 
internal lines must be longitudinal and the other must have the same vector 
index as the external lines. This precludes summation over the vector com- 
pohents and the contribution is of order 1/m. 

In order to have an expression for the free energy consistent with the 
approximation defined by Eqs. (16)-(18), in Eq. (i1) we must retain the 
contribution to (I) represented by the diagrams 

t ) ( 2 0 )  + . ,  " + �9 

where the continuous line represents qL. The set-of equations (16)-(18) and 
(20) is consistent with Eqs. (12). 

Next we note that the only correlation functions entering Eqs. (16)-(18) 
are transverse and that the transverse self-energy is of Hartree type. Therefore 
we can solve Eqs. (7)-(9) self-consistently. Defining 

N = (1/f~) ~ @(k) (21) 
k 

S(k) = (l/E2) ~ qT(1) - k)qr(p) (22) 
p 

V(k) = 4 m B S ( k ) / [ 1  + 4 m B S ( k ) ]  (23) 

we can write the basic equations as 

A g  = tz - 4Bg  3 - 4 m B N g  (24) 

qT-l(k) = k 2 + A + 4Bg  2 + 4 m B N  (25) 

qL-l(k) = k 2 + A + 12Bg 2 + 4 m B N -  8g2BF(k) (26) 

If  T > To, then lim,~o g = 0 and any distinction between longitudinal and 
transverse modes disappears. From Eqs. (25) and (26) we get 

qr-~(k) = qz-~(k) = k ~ + A + 4 m B N  (27) 



6 Marco Zannett i  

which is of the type analyzed in Ref. 3 and leads to the set of critical exponents 
7 = 2, v = 1, ~ = -  1. The transition temperature Tc is defined by the 
divergence of the susceptibility 

X -1 = q - l ( k  -- 0, To) = 0 = A(Tc) + 4 m B N ( T o )  (28) 

I f T  < To, then l im~0  tz/g = 0. Let us first look at the inverse susceptibilities. 
F rom Eqs. (24) and (25) it is trivial to verify that 

q r - l ( k  = 0) = i~/g (29) 

This exact relation holds in any approximation which satisfies K = 
g M r ( k  = 0). ~9~ Furthermore, from Eq. (26), to lowest order in i~/g, one has 

qL-a(k = 0) = (Srr/m)g2(lz/g) ~'2 (30) 

where e = 4 - d and 2 < d < 4, in agreement with the result of  Brezin 
and Wallace. (5) 

From Eqs. (21) and (29) for d -- 3 we have 

N = N(Tc)  - (1/4rr)(l~/g) ~12 (31) 

Inserting this result in Eq. (24), we obtain the equation of state 

p = ~B~-77 ~ + 1 (32) 

w i t h T = 2 , / 3 = � 8 9  5. 
In order to show that Eq. (28) defines the transition temperature unam- 

biguously, we shall now consider the behavior of  the order parameter. 
F rom Eqs. (29) and (30) one sees that when/z --~ 0 both susceptibilities 

diverge for T < T~. Consequently, in order to define the transition tempera- 
ture within the approximation considered for the ordered phase, we cannot 
look at the divergence of the susceptibility and we must consider the order 
parameter. 

Let us set/z = 0. Then from Eqs. (21) and (29) it follows that  N =N(Tc)  
for all T < T~. Using Eq. (28), we may then write Eq. (24) as 

4Bg 2 -- A(T~) - A (33) 

which implies /3 = �89 and proves that the temperature at which the order 
parameter  vanishes is indeed given by To. 

This result shows that the approximation defined by Eqs. (16)-(18) 
solves the difficulty encountered in the case of  a scalar field which we 
mentioned in point (b) of  the introduction. With regard to this we note 
that in the present approximation K and ML satisfy a relation of the exact 
theory, usually referred to as condition of gaplessness, (a~ which was violated 
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in the approximation considered in Ref. 3. This point will be considered in 
more detail in the next section. 

4. G A P L E S S N E S S ,  STABIL ITY ,  A N D  SPECIF IC  HEAT 

The condition of gaplessness, when translational invariance holds, is 
expressed as 

ML(k = 0) = 3K/3g (34) 

We must therefore check that the diagrams for Mc are obtained by differentia- 
ting K with respect to g. K depends on g explicitly and implicitly through qr. 
Differentiation with respect to the explicit dependence generates the first two 
diagrams in Eq. (18). Next we consider the loop and we note that 

6 c ,= (35) 
5g 

where the three-point vertex is given by 

6g-~ (36) 
= 5g 

Differentiating Eq. (25) and solving by iteration, one finds 

; , -  [ ,  - (-_• -"  �9 ] 

Inserting this result into Eq. (35), we obtain the sum of bubbles appearing 
in Eq. (18), which completes the proof that ML and K satisfy the condition 
of gaplessness. 

Let us now consider the thermodynamic stability of the solution for the 
order parameter in the ordered phase. We note that for T < Tc and/x = 0 
Eq. (24) also admits the solution g = 0. Using the variational property of 
the free energy, one can verify that the nontrivial solution considered above 
actually minimizes the free energy up to To. We shall denote by go and gl, 
respectively, the trivial and the nontrivial solution. 

Regarding the free energy as a functional of the order parameter only, 
we have 

( )  (~W) ~q~ (6W'~ 8q~ (38) 3Wgig = -~g + ~qr g,qL'-~g + ~,3qL]o,qr ~g 

The dependence of qr and qL on the order parameter is given by Eqs. (25) 
and (26). In other words, one varies the order parameter and takes the 
correlation functions to have the equilibrium expressions consistent with the 
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given values of g. Thus, by virtue of Eqs. (14) and (15) the last two terms 
on the r.h.s, of Eq. (38) vanish, and one has 

3 W / 8 g  = A g  - K (39) 

which shows that go and gl are extremal points of W. 
By a similar argument, the second derivative gives 

8 2 W / 3 g  2 = A - M z ( k  = O) 

where we have used the property of gaplessness of the approximation. 
From the structure of ML it follows that 

(82W/3g2)g=go = A - 4 m B N ( T ~ )  = A - A(To) < 0 (40) 

(82W/Sg2)o=g~ = qL-Z(k = 0) = 0 (41) 

The result (40) is sufficient to conclude that the extremal point at gl 
must be a minimum for all T < To. 

It is worth noticing that in the Hartree-type approximation that we have 
analyzed in Ref. 3 for the case of a scalar order parameter, gz minimizes the 
free energy up to a temperature T* > To. At T = T* a first-order transition 
occurs and go minimizes the free energy for T > T*. 

We conclude this section by considering the specific heat. For the 
computation we need the explicit expression for the free energy density to 
lowest order in 1/m, namely 

W A 2 r n ~  
- ~  = - i x g  + - ~ g  + B g  ~ + ~ [qo-Z(k) + 4 B g  2 + 2 m B N ] q r ( k )  

2~ log qr(k) + O(1) 

Using Eq. (25), this reduces to 

W A g2 
f2"~ = - - i zg  + -~ + B g  ~ - m 2 B N  2 _ _ _  

(42) 

m ~ log qr(k) (43) 
2~ 

Setting/~ = 0 and T > To, in three dimensions Eq. (43) leads to the result ~3~ 

e 1 { 2 [ A _  - A(Tc)!) 
= ~-~ _1 - (2mrrB)2 [ (44) 

For T < Tr the temperature dependence is contained only in the order 
parameter and we get 

c/f~ = 1 /8B  (45) 

for all T < To. 
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In conclusion, by considering the lowest-order contributions to the 
quantities K, M r ,  ML in the 1/m expansion, we have found an approximation 
which describes the continuation to the ordered phase of  the Hartree approxi- 
mation. The results are in agreement with those of the spherical model. The 
point of interest is that the 1/m expansion provides a useful framework for 
the construction of  a self-consistent approximation valid on both sides of 
the transition. 
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